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PISA SUMMER SCHOOL, 22-26 August 2005

CONTENT OF PRESENTATION

!   LINK ANALYSIS and PERFORMANCES OBJECTIVES

!   CARRIER POWER BUDGET and PROPAGATION IMPAIRMENTS

!   NOISE POWER BUDGET and  SYSTEM NOISE TEMPERATURE

!   LINK PERFORMANCE

!   FADE MITIGATION TECHNIQUES (FMT)

!   FMT IMPLEMENTATION

!   SYSTEM PERFORMANCE & CONCLUSION

!   To probe further: “Satellite communications Systems”, G. Maral &
M. Bousquet, Wiley 4th ed 2002, reprinted Dec 2004
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LINK ANALYSIS OBJECTIVES

 GIVEN A TRANSMITTER AND A RECEIVER :

!    WHAT IS THE SIGNAL POWER RECEIVED FROM THE TRANSMITTER

   AT THE RECEIVER INPUT ?

"  This power is that of the modulated carrier  :   C (W)

!    HOW LARGE IS THE CONTRIBUTION OF UNWANTED SIGNALS

   AT THE RECEIVER INPUT ?

"  The overall contribution can be considered as noise,

  with constant power spectral density  :   N0 (W/Hz)

!    HOW DOES THE LINK PERFORM ?

"  There are 2 aspects to that question :

# RF link performance, in terms of C/N0 ratio

# User’s link performance, which depends on type of signals and modulation
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LINK PERFORMANCE EVALUATION

$    RF LINK PERFORMANCE

"  Characterized by  C/N0 ratio at receiver (Rx) input, where :

# C : power of received carrier (W)

# N0 : Power Spectral Density of noise (W/Hz)

$   USER LINK PERFORMANCE

"   RF link performance conditions quality of baseband signal  delivered to end user
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PERFORMANCE MEASUREMENT AT USER’S END

Analog

Digital

! ANALOG TRANSMISSION

! Link performance expresses in terms of signal-to-noise power ratio (S/N) at demodulator

output

! S/N is related to (C/N0)T depending on the type of considered waveform

! DIGITAL TRANSMISSION

!  Link performance expresses in terms of Bit Error Probability (or BER)

!  BER is related to (C/N0)T depending on Bit Rate & Coding and Modulation format
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!   SIGNAL QUALITY OBJECTIVES

!  In terms of thresholds which must not be exceeded for more than a given % of time

# Example: BER smaller than 10-6

!  SYSTEM AVAILABILITY OBJECTIVES

!   Asys = (required time - down time) / required time

  Required time : period of time during which the user required the link

to be in condition to perform a required function

  Down time : cumulative time of link interruption within the required time

  Interruption : period of time during which there is : a complete or partial signal loss

or excessive noise or a discontinuity or a severe signal distortion

!  PROPAGATION TIME

!  The overall link propagation time should not exceed a maximum value

  which depends on the user’s requirement

PERFORMANCE OBJECTIVES
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$ AVAILABILITY DEFINITION

!   AVAILABILITY (Asys) implies quality objectives to be complied

  during a given time percentage (typically between 99 % and 99.9 %)

!   This requires the link (C/N0)T ratio to be larger or equal to a specified value

  for the considered time percentage

!  (C/N0)T ratio varies according to :

#   Propagation effects : attenuation (mainly rain), scintillation and depolarisation

#   Implementation losses : mainly antenna depointing or equipment failures

$  SYSTEM AVAILABILITY :

where : Atx,Rx : transmitting/receiving ES availability

Asat : satellite availability

Alink : link availability

SYSTEM AVAILABILITY

xx RlinksatTsys AAAAA !!!=
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LINK ARCHITECTURE

$    TOTAL (OR OVERALL) RF LINK PERFORMANCE DEPENDS ON :

"  RF uplink performance

"  RF downlink performance
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ANTENNA PARAMETERS : GAIN

"  Antenna gain is maximum @ boresight :

#  where : " = C / F is the radiofrequency wavelength (m)

#  and : Aeff is the antenna effective aperture area (m2)

effAG !=
2max

4

"

#

!  REFLECTOR ANTENNA

"   Aperture : disc of diameter D whose area :

"   Antenna effective aperture area :              Aeff = # . A
4

2
D

A
!

=

2

max !
"

#
$
%

&
=

'

(
)

D
G

!   ANTENNA GAIN DEFINITION

"  Ratio of the power per unit solid angle radiated/received by the antenna in a given direction,

  to the power per unit solid angle radiated/received by an isotropic antenna

  supplied by the same power
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ANTENNA PARAMETERS :  RADIATION PATTERN

!   DEFINITION

"  Gain variation as a function of the angle !  relative to boresight
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ANTENNA PARAMETERS :  RADIATION PATTERN

!    DEFINITION

"  Gain variation as a function of the angle !  relative to boresight

!   HALF POWER BEAMWIDTH

"  $3dB : full angular width between the two directions

where the gain is 3 dB below maximum (°) :

D
dB

!
" #$ 70
3

!   GAIN VARIATION

"  For small off-axis angle ! :

   where : Gmax,dB = 10 LOG (Gmax)

( )
2
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#
$$
%

&
'=

dB

dBdB
GG

(

)
)

©
 2

0
0
5
 -

 B
o

u
sq

u
et

 &
 S

at
N

E
x

 -
 A

ll
 r

ig
h

ts
 r

es
er

v
ed

PISA SUMMER SCHOOL, 22-26 August 2005

GAIN VS BEAMWIDTH
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TRANSMITTED POWER IN A GIVEN DIRECTION

Flux density

at distance R :

   (W / m2)

2
4 R

GP
TT

!

"
=#
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RADIATED POWER : EIRP

! Effective Isotropically Radiated Power in the considered direction !

"  where : PT : power fed to the antenna

 GT(!) : antenna gain at angle !

"  Maximum EIRP is at boresight (! = 0) : Max (EIRP) = PT.GTmax

TT
GPEIRP !=
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CARRIER POWER BUDGET: SINGLE LINK

Rx Flux density : (W)
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Free space attenuation : (dB)

2
4 R

GP
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!

"
=#Tx Flux density @ distance R : (W/m2)

Effective Isotropically Radiated Power :

TT
GPEIRP !=
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POWER BUDGET : FREE SPACE LOSS
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where    cos %   =   cos Lst  &  cos Lsat  &  cos 'Gst - Gsat'   +   sin Lst  &  sin Lsat

with

latst, Gst, Hst : latitude, longitude & altitude of the Earth station

Gsat, Rsat : longitude  &   altitude of the satellite (35786 km)

R0 : Earth radius (6378 km)
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POWER BUDGET : FREE SPACE LOSS
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POWER BUDGET : PROPAGATION LOSS

!  PROPAGATION ISSUES

"   Ionospheric effects : important for frequencies lower than 5 GHz

"   Tropospheric effects : dominant for frequencies higher than 10 GHz

!  ATTENUATION EFFECTS

"   Gas attenuation :    dry air (oxygen) and water vapour

"   Hydrometeor attenuation :    clouds, rain and melting layer

"   Scintillation : clear sky conditions, with clouds, during rain

!  INFLUENCE ON SATELLITE LINK

"   Strong impairments : Atot = Agaz . Arain

"    Lower availability when frequency increases

totFS

R

R

AL

GEIRP
P

!

!
=
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RAIN ATTENUATION

! TOTAL SLANT PATH ATTENUATION

 in most of the statistical models : L001 = f(LES, Esat,hr,R001,F, (001)

 see Rec. ITU-R P.618

sat
E

L
A

sin

!
=

"

! SPECIFIC ATTENUATION : ( = k R ! see Rec. ITU-R P.838

  where k and ! : coefficients, frequency and polarisation dependent

( )! "=
L

dxxA

0

#

! ATTENUATION THROUGH A PRECIPITATION OF LENGTH L :

  where ((x) : specific attenuation [dB/km]
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! RAIN SPECIFIC ATTENUATION

 Rec. ITU-R P.838

"   ( = k R !      [dB/km]

"   with (k,!) = f(F,), Esat)

RAIN ATTENUATION
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RAIN ATTENUATION

! CLIMATIC DEPENDENCE

"   Attenuation %

   when RR %

"   Map of rain rate

   exceeded for

   0.01 % of an

   average year

"   Rec. ITU-R P.837
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Predictions

performed with

Rec. ITU-R P.618

Total impairment  @ 30 GHz

TOTAL ATTENUATION
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POWER BUDGET : IMPLEMENTATION LOSSES

!  FEEDER LOSSES :

"   EIRP = PT.GT = (PTx.GT) / LFTx

!  POLARIZATION MISMATCH

   Losses caused by possible polarization mismatch between Tx & Rx antennas

!  ANTENNA MISPOINTING

"   Antenna gains in the Tx-Rx direction :

#  GT = GTmax / LT

 where LT (dB) = 12 . (!T / $3dB)2

#  GR = GRmax / LR

 where LR (dB) = 12 . (!R / $3dB)2
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ORIGIN OF NOISE

!    DEFINITION OF NOISE

"  All unwanted contributions of energy at the input of the receiver

  which tend to corrupt the useful signal

!    ORIGIN OF NOISE

"  Radiation from radiating bodies located within the antenna lobe i.e. :

# for satellite antennas : the Earth

# for Earth station antennas : - galactic & cosmic sources,

- atmospheric phenomena

- ground in sidelobes radiation pattern

"  Noise generated within the receiver components

"  Interference from other transmitters
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NOISE CHARACTERISATION

!    NOISE POWER SPECTRAL DENSITY :    N0 (W/Hz)

"  N0(f) : amount of noise power

per unit of bandwidth

"  If N0(f) = Cte = N0 &  White Noise

"  given N = Noise power (W)

  measured in bandwidth B (Hz) : N0 (W/Hz)

B

N
N =
0

!   NOISE TEMPERATURE T OF A NOISE SOURCE

"  where T : t° of a passive system (e.g. resistor)

  which would generate the same amount of noise

  as the considered source of noise

"  k : Boltzman constant = 1.379 . 10-23   W/K.Hz

= - 228.7 dBW/K.Hz

kTN =
0
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EFFECTIVE INPUT NOISE TEMPERATURE – NOISE FIGURE

$  NOISE FIGURE : F

"  Ratio of the total system noise power to that part of the system output noise power

  generated by an input source at the reference t° : T0 = 290 K

$   EFFECTIVE NOISE TEMPERATURE

   OF A SYSTEM : Te (K)

"  Te : noise t° of a source at the input of

the system (considered as noise-free) that

produces the same contribution to the

system output noise as the internal noise

of the actual system itself

( ) ( )
0

0

111010 TFT
T

T
LOGFLOGF

e

e

dB
!"=#$$

%

&
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(

)
+==
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SYSTEM NOISE TEMPERATURE

!  CONTRIBUTIONS TO SYSTEM NOISE TEMPERATURE

"   Noise from the antenna

"   Noise generated from feeder losses

"   Noise generated within the receiver

T
R
  

 TF

= T

!  SYSTEM NOISE T° CALCULATION

  AT THE INPUT OF THE RECEIVER

#   T : system noise t°

# TA : antenna noise t°

# TF : t° of feeder (room t°)

# TR : receiver effective input noise t°

#  LFRX : feeder loss

R

FRX

F

FRX

A
T

L
T

L

T
T +!!

"

#
$$
%

&
'+=
1

1
2

=
FRX
L

T
1
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SATELLITE ANTENNA NOISE TEMPERATURE

   TA : averaged contribution of Earth noise t° (about 290 K)

 + surrounding background (galactic) t° (a few K)

"  With spot beam antenna, Earth is viewed within the entire antenna pattern & TA + 290 K

"  Noise t° T at receiver input :

"  With TA = 290 K & assuming TF + 290 K (ambient) :

R

FRX

F

FRX

A
T

L
T

L

T
T +!!

"

#
$$
%

&
'+=
1

1

RRF
TTTT +!+! 290
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EARTH STATION ANTENNA NOISE TEMPERATURE

!  CLEAR SKY CONDITIONS

GROUNDSKYA
TTT +=

!  RAIN CONDITIONS

"  Brightness t° of clouds or rain

with ) : transmission coefficient

       and *e : medium emissivity

"  Antenna t° due to clouds or rain

     with : TM = 1.12 Tamb(K) - 50

GROUND

p

M

p

SKY
A T

A
T

A

T
T +

!
!

"

#

$
$

%

&
'+=
1

1

eMMB
TTT !" # $=%

%
&

'
(
(
)

*
+= cos

1

1
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CLEAR SKY NOISE TEMPERATURE

Sky Brightness temperature (Rec. ITU-R P.372)
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GROUND CONTRIBUTION TO ANTENNA NOISE TEMPERATURE

!    DEPENDS ON :

"  Type of antenna (mounting, diameter)

"  Elevation angle of antenna

"  Sidelobes radiation pattern

"  Frequency

!    PRACTICAL VALUES

"  + 10 - 30 K   @ elevation angle + 10 °
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! SINGLE LINK CONFIGURATION

C :Carrier power at receiver input (W) C = PRX = (PT GT) . G/L

where G = GRmax / LFRX LR(LR : antenna off-axis fall-out)

N0 : Noise power spectral density (W/Hz) N0 = k T

where T : SYSTEM NOISE TEMPERATURE (K)

CARRIER POWER-TO-NOISE POWER SPECTRAL DENSITY RATIO

EIRP (W)

Path Loss

Rx Figure of merit (K-1)

( )( )( )( )kTGLGPNC
TT

/1//1/
0
=

FIGURE OF MERIT G/T (K-1) characterizes the effectiveness of the receiving end
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! SINGLE LINK CONFIGURATION

C = PRX = (PT GT) . G/L

N0 = k T

where T = System Noise Temperature (at receiver input)

CARRIER-TO-NOISE POWER RATIO AT RECEIVER INPUT

N
BN

C

N

C
1

0

!=

( )( )( )( )kTGLGPNC
TT

/1//1/
0
=

where BN : receiver noise effective Bandwidth (Hz)

T

©
 2

0
0
5
 -

 B
o

u
sq

u
et

 &
 S

at
N

E
x

 -
 A

ll
 r

ig
h

ts
 r

es
er

v
ed

PISA SUMMER SCHOOL, 22-26 August 2005

UPLINK C/N0
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! EIRPES = (PT GT)ES = (PTx/LFTX)ES . (GTmax/LT)ES

"  LT = 12 (!T / "3dB)2

   where !T : ES depointing angle

   (depends on type of tracking if any)

! (G/T)SL = (GRmax/LR)SL . (1/LFRX)SL . (1/T)SL

"  where LR : usually 3dB for Earth stations located at edge of coverage
T : satellite system noise temperature # 290 + TR (K)

"  (G/T)SL depends on Earth station line-of-sight direction

! Power flux density   (W/m2)

"  $ = EIRPES / 4% R2

&   CU =  PRx = $ . Areff (1/LFRX) = $ (GR'
2/ 4%) (1/LFRX)SL  = $ (GRmax/LR) (1/LFRX)SL  ('

2/ 4%)

#  (C/N0)U = $ (G/T)SL ('2/ 4%) (1/k)

UPLINK C/N0
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DOWNLINK C/N0
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DOWNLINK C/N0

! (C/N0)D computation assumes

             that a noise-less carrier

             is generated by the satellite

! EIRPSL = (PT GT)SL = (PTx/LFTX)SL . (GTmax/LT)SL

"  where LT : usually 3dB for Earth stations located at edge of coverage

! (G/T)ES = (GRmax/LR)ES . (1/LFRX)ES . (1/T)ES

"  LT = 12 (!R / "3dB)2

  where !R : ES depointing angle (depends on type of tracking if any)

   and T : Earth station system noise temperature (K),

        it includes antenna noise TA

     which varies with elevation angle and rain intensity
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INFLUENCE OF PROPAGATION ON LINK BUDGET

Transparent repeater

!  DOWNLINK

C/N0,D = EIRPSL - LFS,D - AD + G/TES - kdB

"  C/N0,D = (C/N0,D)ClearSky - AD - ((G/TES)Ad - ((EIRPSL)Au

!   UPLINK

C/N0,U = EIRPES - LFS,U - AU + G/TSL - kdB

"  C/N0,U = (C/N0,U)ClearSky - AU
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EFFECT OF ATMOSPHERE ON G/T

! EXAMPLE

"   Earth station

   figure of merit

   degradation

   for an Earth station

   located in Milan (Italy)

"   Esat = 38°

"  Rec. ITU-R P.618
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OVERALL STATION-TO-STATION LINK

Other carriers
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OPERATING POINT

Linear
region

Saturation
region

Simplified model of a transponder

! LINEAR OPERATION

PT < (PT)max   -   (N0)IM = 0

" Constant repeater power gain

" Satellite transmit output power

  shared between :

$  amplified carriers

$  amplified input noise

! SATURATION REGION OPERATION

" Limited available power from sat. repeater

" Output power shared between :

$   amplified carries

$   amplified input noise

$   intermodulation products

      )   Power gain value

         dependent on operating point
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OVERALL LINK BUDGET with LINEAR OPERATION   - 1/2

"  Uplink : (C/N0)U = CU / N0U

"  Downlink : (C/N0)D = CD / N0D

"  Overall link : (C/N0)T = CD / N0T

Total link noise

=

Uplink retransmitted noise

+ downlink noise

Total link noise
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OVERALL LINK BUDGET with LINEAR OPERATION   - 2/2

% CD  =  CU . GS . GT . (1/LD) . GR  =  G . CU

where G  =  GS . GT . GR / LD represents the total power gain

from satellite repeater input receiver

to Earth station input receiver

& Noise at receiver input = uplink retransmitted noise + downlink noise :

N0T  =  N0U . GS . GT . (1/LD) . GR  +  N0D

  =  G . N0U  +  N0D

' (C/N0)T
-1 =  N0T / CD

= (G . N0U + N0D)  /  CD  = N0U / CU  +  N0D / CD

    (C/N0)T
-1  =  (C/N0)U

-1  +  (C/N0)D
-1
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Total link noise

MULTICARRIER OPERATION   - 1/5

"  Uplink : (C/N0)U = CU / N0U

"  Intermodulation : (C/N0)IM

"  Downlink : (C/N0)D = CD / N0D

"  Overall link : (C/N0)T = CD / N0T

Total link noise

=

Uplink retransmitted noise

+ intermodulation noise

+ downlink noise
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Linear
region

Saturation
region

Simplified model of a transponderINTERMODULATION  PRODUCTS

! INTERMODULATION PRODUCTS

If several carriers at frequencies

f1, f2, …, fn are fed to a non-linear device

operated in the saturation region,

one finds at the output of the transponder

the input carriers plus a number

of so-called  “intermodulation products”.

! FREQUENCY fIM of each of these “intermodulation products” is a linear

combination of the input frequencies :

"  fIM = m1 f1 + m2 f2 + m3 f3 + … + mn fn

   where mi is a positive or negative integer
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MULTICARRIER OPERATION : INTERMODULATION PRODUCTS

! The order M of any intermodulation product is defined as :

M = |m1| + |m2| + |m3| + … + |mn|

" When the center frequency of the amplifier is large compared to its bandwidth,
odd-order intermodulation products with :   * mi = 3, 5..

are the only ones falling within the useful frequency

band

"  Intermodulation product power

  decreases with the order of the product.

  So, only third & fifth order intermodulation

  products are of concern
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MULTICARRIER OPERATION : INTERMODULATION NOISE   - 4/5

Ex. : intermodulation noise spectrum
 for a typical TWTA with 10 carriers :

$  six central carriers

$  two 64-channel carriers

$  two 132-channel carriers 

! Intermodulation products may appear at :

"  Tx ES non-linear power amplifier output

"  satellite repeater output

! These intermodulation products

can interfere with the desired carriers,

and hence be considered as noise,

called : “intermodulation noise”

! With modulated carriers,

the intermodulation noise is distributed

over the entire frequency band

® Intermodulation products can be

  considered as filtered white noise

  with constant spectral density (N0)IM
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MULTICARRIER OPERATION : OVERALL LINK BUDGET   - 5/5

( TOTAL NOISE @ receiver input  =

uplink retransmitted noise

+  intermodulation noise

+  downlink noise

( Assuming the SAME POWER LEVEL for all incoming carriers

@ repeater input :

C/N0)T
-1  =  (C/N0)U

-1  +  (C/N0)D
- 1  +  (C/N0)IM

-1
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MULTICARRIER OPERATION  WITH INTERFERENCE

"  Uplink : (C/N0)U = CU / N0U

"  Intermodulation : (C/N0)IM

"  Interference :               (C/N0)I

"  Downlink : (C/N0)D = CD / N0D

"  Overall link : (C/N0)T = CD / N0T

Total link noise

=

Uplink retransmitted noise

+ intermodulation noise

+ interference

+ downlink noise

Total link noise
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OVERALL LINK BUDGET with INTERMOD & INTERFERENCE

! SOURCES OF INTERFERENCE

!   Within the considered satellite system

!   Satellite systems   )   satellite systems

!   Satellite systems   )   terrestrial microwave systems

! Interfering signals are considered as noise with Power noise density (N0)I

This noise adds tot he total noise of the system :

(C/N0)T
-1  =  (C/N0)U

-1  +  (C/N0)D
- 1  +  (C/N0)IM

-1  + (C/N0)I 
-1

  where (C/N0)I represents the Carrier-to-Interference Ratio

  and includes uplink and downlink contributions

(C/N0)I
-1  =  (C/N0)I,U

-1  +  (C/N0)I,D
-1
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LINK AVAILABILITY ADJUSTMENT: STATIC MARGIN

!   Larger margin value provides higher link availability

    as (C/N0)T will fall below the required value during a shorter time interval

(    STATIC LINK POWER MARGIN

!  Difference between required and provided C/No

!  Allows reduction in provided C/No without affecting link performance
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LINK AVAILABILITY

!  System cost  increases rapidly

    with system availability

!   Customer should not ask

   for tight specifications,

   unless strictly needed
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CONTENT OF THE PRESENTATION

$    LINK ANALYSIS and PERFORMANCES OBJECTIVES

$   CARRIER POWER BUDGET and PROPAGATION IMPAIRMENTS

$   NOISE POWER BUDGET and  SYSTEM NOISE TEMPERATURE

$   LINK PERFORMANCE

$   FADE MITIGATION TECHNIQUES (FMT)

$   FMT IMPLEMENTATION

$   SYSTEM PERFORMANCE & CONCLUSION
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FRAMEWORK  RELATED TO BROADBAND SATCOM SYSTEMS

!  TREND TO HIGHER FREQUENCY BANDS

"   Conventional bands (L, S, C) overcrowded & Ku-band almost saturated

"   Increasing use of data rate-hungry multimedia applications

"   Competition with terrestrial networks : need for larger bandwidths

!  HIGH FREQUENCY BAND ADVANTAGES

!   Wide bandwidths : 1 GHz at Ka-band, 3 GHz at Q/V-band, 2 GHz at EHF band

!   Technology : reduced antenna and RF component size,

!   Narrow spot beams and high EIRP

!  HIGH FREQUENCY BAND LIMITATIONS

"   Current technology not mature enough # high development costs

"   Pointing accuracy more critical at equivalent antenna diameter

"   Propagation issue : influence of tropospheric effects



©
 2

0
0
5
 -

 B
o

u
sq

u
et

 &
 S

at
N

E
x

 -
 A

ll
 r

ig
h

ts
 r

es
er

v
ed

PISA SUMMER SCHOOL, 22-26 August 2005

! TOTAL IMPAIRMENT @ 30 GHz
# Predictions obtained with

Recommendation ITU-R P.618

!  HOW TO PROVIDE SUFFICIENT

AVAILABILITY ?
# Large static margins not 

applicable (technology limitations

and cost efficiency)

#  Fade Mitigation Techniques

(FMT)

PROPAGATION IMPAIRMENTS AT HIGH FREQUENCIES
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BASICS OF FMT : OBJECTIVES

$  POWER CONTROL :  aims at keeping constant link C/N0

%  Up-Link Power Control, End-to-End PC, Down-Link PC, On-Board Beam Shaping

$  ADAPTIVE WAVEFORM : aims at adapting the required C/N0 @ constant BER

%   Adaptive Coding or Modulation : allows the required ES/N0 to be adjusted

%   Data Rate Adaptation :       aims at adjusting the data rate

$  DIVERSITY :  aims at re-routing connection in the network

%  Site Diversity,   Satellite Diversity,   Frequency Diversity

$  LAYER 2 :  aims at re-transmitting lost information

%  Automatic Repeat reQuest,   Time Diversity

S
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$   UPLINK (ULPC)

"  compensates for uplink
         propagation impairments

"  allows operating at low power
         in clear sky cond. to limit interference

"  constant carrier power level at the transponder input
  (satellite antenna gain roll-off & mispointing, RF chains degradations)

"  avoids satellite EIRP reduction due to uplink impairment

$   EEPC (transparent repeater operated far from saturation)

"  maintains a constant margin on the overall link budget

"  mitigates downlink impairments if sufficient repeater margin
  keeping reasonable non-linear effects (intermodulation noise & capture effects)

BASICS OF FMT : POWER CONTROL

OBBS

DLPC

ex : ULPC
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BASICS OF FMT : ADAPTIVE WAVEFORM

! AC, AM : Adaptive 

Coding or Modulation

OPERATION MODE :

Perf. objective : BER = Cte

"  Constant bandwidth

     & variable info data rate (Rb)

     (Additional mitigation due

       to DR adjustment)

"  Variable bandwidth

     & constant info data rate (Rb)

Eb/N0 (dB)

Threshold

!0

!1

!2

M1 M0
M2

10-3

10-9

10-6

BER
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$  SITE DIVERSITY (SD)

"   Principle :

   2 ES inter-connected

   by a terrestrial link

"   Limitations :

     uncorrelated fades

    =>   convective cells

&   Low percentages of time - Control ES or gateways

$  FREQUENCY DIVERSITY (FD)

" Objective :   in presence of fading, re-routing connection

                      through a lower frequency band payload

" Config. :  Cross-strapping (OBP) or Double-hop (3rd ES)

BASICS OF FMT : DIVERSITY FMT
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BASICS OF FMT : JOINT FMT

5 dB

10 dB

30 dB

40 dB

0.01 %                   0.1 %                    1 %                      10 % % of year

Fade depth (dB)

20 dB
SD

ULPC

AM

SatD

DLPC

OBBS

FD

AC

1

2

3

4

5

OBBS

OBBS + ULPC

OBBS + ULPC + AM

OBBS + ULPC + AM + SatD

OBBS + ULPC + AM + SatD + SD

2

3

4

5

1
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CONTENT OF THE PRESENTATION

$    LINK ANALYSIS and PERFORMANCES OBJECTIVES

$   CARRIER POWER BUDGET and PROPAGATION IMPAIRMENTS

$   NOISE POWER BUDGET and  SYSTEM NOISE TEMPERATURE

$   LINK PERFORMANCE

$   FADE MITIGATION TECHNIQUES (FMT)

$   FMT IMPLEMENTATION

$   SYSTEM PERFORMANCE & CONCLUSION
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!   DETECTION OF THE CHANNEL BEHAVIOUR

" Purpose :

 real-time estimate

 of current fade level

" Real-time estimate

 of overall SNIR

!   SHORT-TERM PREDICTION

" Purpose : compensation of the system reaction time

" Filtering of fast varying component, frequency scaling, real -time short-term prediction

!  DECISION FUNCTION

" Purpose : to authorise & trigger a given mitigation

" Introduction of local margins to compensate control loop inaccuracies

FMT IMPLEMENTATION : CONTROL LOOP

Monitored

signal
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FMT IMPLEMENTATION : POWER VARIATIONS

' Slow variations : attenuation

' Fast fluctuations : scintillation

©
 2

0
0
5
 -

 B
o

u
sq

u
et

 &
 S

at
N

E
x

 -
 A

ll
 r

ig
h

ts
 r

es
er

v
ed

PISA SUMMER SCHOOL, 22-26 August 2005

$   INFORMATION EXTERNAL TO THE LINK (OPEN LOOP)

"  Meteorological measurements

&  Rainfall rate : Rain-gauge

&  Brightness temperature : Radiometer

&  Reflectivity profiles : Radar

&  Satellite imagery

"  Beacon measurement

!    INFORMATION INTERNAL TO THE LINK

"  BER measurements

"  Power measurements

&  Measurement of the average amplitude of the received symbols

&  Estimation of the Signal to Noise + Interf. Ratio (SNORE)

"  Affected by interference contributions

FMT IMPLEMENTATION : FADE AND SNIR ESTIMATION

Fscaling(Adown beacon) " Aup

Aup Adown

Adown beacon
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$  INTRA-SYSTEM INTERFERENCE

"  Adjacent-channel interference

"  Co-channel interf. Inter / intra beam

"  Inter-beam cross-channel
  interference

Orthogonal

polarisation

Same

polarisation# frequency
Useful ES

FMT IMPLEMENTATION : INTERFERENCE CONTRIBUTIONS
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FMT IMPLEMENTATION : INTERFERENCE CONTRIBUTIONS

$  INTER-SYSTEM INTERFERENCE

"  Adjacent satcom

  system interference

"  Other system interference

Interfering ES

3°

UPLINK

Adjacent

system

Interference

Useful ES

"

Interfering

adjacent

FWBA

system
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FMT IMPLEMENTATION: TRIGGERING MARGINS

!  DETECTION MARGIN

"  Takes into account estimation errors
    due to attenuation varying
    more rapidly than expected

"  Avoids triggering due to fast    
   fluctuations

"  Copes with errors due to
    frequency scaling implementation

!  HYSTERESIS MARGIN

"  Avoids repeated switches
    between consecutive FMT modes

HMi+1

DMi+1

Mi+1

S0

Eb/N0

HMi-1

DMi-1

DM0

HM0

Si-1

HMi

DMi

M0

Mi

Si+1

Si

HMN-1

DMN-1

MN

SN-1

SN
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FMT CONTROL LOOP ARCHITECTURE :

CENTRALIZED D&D SCHEMES FOR BENT-PIPE SYSTEM

UES NCC

GES

Open-loop Closed-loop

UES NCC

GES

Measurement, signalling, com. link

Hybrid-loop
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CONTENT OF THE PRESENTATION

$    LINK ANALYSIS and PERFORMANCES OBJECTIVES

$   CARRIER POWER BUDGET and PROPAGATION IMPAIRMENTS

$   NOISE POWER BUDGET and  SYSTEM NOISE TEMPERATURE

$   LINK PERFORMANCE

$   FADE MITIGATION TECHNIQUES (FMT)

$   FMT IMPLEMENTATION

$   SYSTEM PERFORMANCE & CONCLUSION
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LINK BUDGET within SYSTEM DESIGN: TRADITIONAL APPROACH

! DESIGN WITH STATIC PHYSICAL LAYER AND STATIC MARGINS

( ) Required
No

C
Int,Att,Gsat,Lfs

N

C
maxcase worstimummin !

0

Depends on the Availability time

and on the coverage area

99.5%
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LINK BUDGET IN FMT SYSTEM DESIGN: NEW APPROACH

! TAKES INTO ACCOUNT LINK BUDGET SITUATION AT EACH POINT (X,Y) OF
THE COVERAGE.

Atmospheric attenuation is modeled using CDF given in ITU-R P 618 recommendation
Interference in modeled from antenna pattern and considering a uniform distribution of users and
traffic ( )) ,,(), , ,,(,) ,,(), ,,(

0
tyxIntftyxAtttyxEIRPfyxLfs

N
C

It assigns to each point the best possible modulation and coding
in terms of spectral efficiency

( ))t,y,x(Int),t,y,x(Att),y,x(Gsat),y,x(Lfs
N

C

0

Position dependent Position & Time dependent

Power Control Site Diversity Frequency Diversity

)                 (Re
00
quired

N
C

N
C !

Adaptive Coding and Modulation

mod , coding
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LINK BUDGET with FMT SYSTEM DESIGN: NEW APPROACH

$  CAPACITY

# With a fixed available bandwidth : capacity is linked to the spectral efficiency of

the waveform and code used

#If Adaptive Coding and Modulation is used, the mean capacity of the system

can be calculated by integration and averaging

(  AVAILABILITY: Time when service meets the required quality

(  COVERAGE: Area where service is available

)codmod,(Re
00
quired

N
C

N
C !

Spectral
 efficiency $

Required Minimum)(
00 N
Ct

N
C !

Required) ,,(
00 N
CMinimumavailtyx

N
C !=

( )  condition meets that efficiency maximumf,Att,y,xmax !"

( ) ( ) ( ) ),(y)Att(x,

1

0
max ),( ),,(,,,, yxAttdpyxAttpfyxAttyxfyx !"="

( )
( )

( )dxdy f,y,x
BSNb

f
nB)y,x(

Nb

n n

systeme !!"
#

=

$=$
1

11
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EVENT-BASED ANALYSIS WITH FMT
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ADVANCED CHANNEL MODELS :

SPATIAL VARIATIONS

HYCELL

model :
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Statistical modelling of a rain field in

a French area
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$  APPLICATION DOMAIN

&  Possible whatever the type of service :

  real time or not, reliable or not, ...

$  DEFINITION OF ULPC

&  Output power : from 600 mW to 2 W
   ) ULPC dynamic range " 6 dB

Frequency29.75 GHz29.75 GHzCoding rate2/32/3Uplink information data rate2272 kbit/s2272 kbit/sNominal SSPA output power600 mW2 WUplink Eb/(N0+I0)6.35 dB11.5 dBRequired Eb/ N0 (BER = 1.4*10-9)4.6 dB4.6 dBUplink margin1.75 dB6.9 dBULPC dynamic range/5.2 dB

Required

availability

= 99.8 %

Ex: LINK AVAILABILITY WITH ULPC
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$  DEFINITION OF JOINT FMT

&  ULPC : from 800 mW to 2 W

&  AC : Constant Tx DR : Rc = 3019 kbit/s

&  DRA :  DR / 2  and  DR / 4

&  FMT dynamic range : 16.0 dB

Frequency29.75 GHz29.75 GHz29.75 GHz29.75 GHzCoding rate3/41/21/31/3Uplink info. data rate2272 kbit/s1515 kbit/s1010 kbit/s505 / 252 kbit/sSSPA output power0.8 / 2 W2.0 W2.0 W2.0 WUplink Eb/(N0+I0)7.0/11.0 dB12.7 dB14.5 dB17.5 / 20.5 dBReq. Eb/ N0 (1.4*10-9)5.4 dB3.6 dB2.9 dB2.9 dBUplink margin1.6 / 5.6 dB9.1 dB11.6 dB14.6 / 17.6 dBFMT dynamic range- / 4.0 dB7.5 dB10.0 dB13.0 / 16.0 dB

Required

availability

= 99.8 %

LINK AVAILABILITY WITH ULPC & AC
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CONCLUSION

! LINK PERFORMANCE

" Conditions QoS and other system performance

" Strong fades occurs for significant time percentages as frequency increases (Ka, Q/V…)

" Static link margins are used for conventional systems

! FMTs allows mitigation of strong fades

" Power control, ACM, diversity…

" FMT techniques are complementary

! FMT implementation

" Several functions: estimation, prediction, decision

" Open, closed, hybrid detection schemes

" Centralized and distributed architectures

" Decision/Hysteresis margins

! New Link budget design approach with ACM

" No longer defined for worst case location

" Matched to each station-to station link

" Significant increase in system capacity (clear sky), availability & coverage (rain conditions)

©
 2

0
0
5
 -

 B
o

u
sq

u
et

 &
 S

at
N

E
x

 -
 A

ll
 r

ig
h

ts
 r

es
er

v
ed

PISA SUMMER SCHOOL, 22-26 August 2005

Prof Michel BOUSQUET

Director Aerospace Communications Programmes

SUPAERO

BP 54025 - 10 avenue Edouard Belin

F-31055 TOULOUSE Cedex 4

Tel: +33 562 17 8086 - Fax: +33 562 17 8345

michel.bousquet@supaero.fr

michel.bousquet@tesa.prd.fr

http://www.supaero.fr

Laurent CASTANET

ONERA - DEMR

BP 54025 - 2 avenue Edouard Belin

F-31055 TOULOUSE Cedex 4

Tel: +33 562 25 2529 - Fax: +33 5 62 25 2577

laurent.castanet@onera.fr

http://www.onera.fr/demr

Co-operative Research Laboratory

TéSA

14-16 Port Saint Etienne

31000 TOULOUSE

http://www.tesa.prd.fr


